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0.1

ABSTRACT
'4,

We develop a method for the analysis of perturbations of integrable

planar systems of differential equations. Concentrating on the case in

which the unperturbed system is Hamiltonian and the perturbation introduces

dissipation and time-periodic forcing, we show how the global solution

curves (level sets) of the unperturbed system can be used in regular per-

turbation calculations to locate subharmonic orbits and homoclinic orbits

and to characterize the bifurcations in which they are created as external

parameters are varied. We apply our results to Duffing's equation and

point out applications to the chaotic motions of buckled elastic beams

undergoing periodic excitation.

° "',

4.



0.2

CONTENTS

1. Introduction: A Physical Example ...... ................. 1.1

2. Poincar6 Maps and Invariant Manifolds .............. 2.,

3. Perturbations of Integrable Systems: Melnikov's Method ..... 3.1

3.1 Bifurcation to Homoclinic Orbits ....... .............. 3.2

3.2 Bifurcation to Subharmonics ....... ................. 3.8

3.3 Higher Order Terms and Stability ....... .............. 3.14

4. Global Bifurcations of Duffing's Equation .... ............ .. 4.1

5. Smale Horseshoes, Newhouse Sinks and Chaotic Motions ......... .. 5.1

5.1 The Smale Horseshoe ......... ..................... 5.1

5.2 Homoclinic Tangencies and Newhouse Sinks ..... .......... 5.5

6. The Global Structure of Solutions of Duffing's Equation ..... 6.1

6.1 Subharmonics and Domains of Attraction ... ........... .. 6.1

6.2 Homoclinic Orbits and Chaotic Motions .... ... ........... 6.6

6.3 The Strange Attractor: Numerical Results and Conjectures . 6.9

Appendix: invariant Manifolds and the Lambda Lenzm.a ..... ......... A.1

Ueferences ........... .............................. .. R.1

:'

4

- - - - - - - - - - * --"- - - - -



S~1.1

* 1. INTRODUCTION: A PHYSICAL EXAMPLE

In this article we develop a method for the analysis of systems of the

form

= f(x) + eg(x;t), (1.1)

where x = I IR2, and f = [g 1( t= are sufficiently

smooth (bounded) functions and g is T-periodic in t. In examples of in-

terest g will generally also contain parameters

g9(x,t) = g(x;t;p) p E IRm. (1.2)

The unperturbed system,

= f(x), (1.3)

is assumed to be integrable. In particular, we shall concentrate on the

Hamiltonian case, in which a real valued function H :IR2 E IR exists and

H- " (1.4)

The results we describe here can be generalized to multidimensional

systems and even to infinite dimensional Hamiltonian systems arising on

evolution equations in studies of partial differential equations (cf. Holmes

and Marsden [1981a]), and to the study of multidegree of freedom Hamiltonian

systems with perturbations which do not depend explicitly on time (cf.

Churchhill [19803, Holmes and Marsden [1981b,c]).

Our basic assumption, made precise in Section 3, is that the unper-

turbed system (1.3) possesses a nondegenerate (hyperbolic) saddle point

p wit-i a homoclinic orbit F0 _go(t)It E IR} such that

0- . . - - -- --- ~-
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lim q (t) r lim ( P0  (1.5)
t-0. +c 00 -

We further assume that the interior of r0  is filled with a one-parameter

family of periodic orbits = q(t)Ia E (-1,0), t E [0,T ]} where T

is the period of qC(t),

lim q (t) = q°(t), (1.6)

a- 0

and lir qa(t) q is an elliptic fixed point or center, cf. Figure 1.1.

The homoclinic orbit can be replaced by a homoclinic cycle connecting several

) (t)

Figure 1.1. The unperturbed phase portrait of (1.3).

saddle points. Such oroits and cycles filled with periodic motions occur

naturally in the phase planes of single degree of freedom nonlinear Hamil-

tonian systems; the pendulum:

a + sin 0 0 , (1.7)

and Duffing's equation with negati'.• linear stiffness:

y - y + y -3 , (1.8)

p,-ovido examples. We se'ect Duffing's equation as our major example in

subsequent se,.tions because of its importance in mechanics, which we nlow
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briefly indicate. For more details see Tseng and Dugundjii [1971], Moon

and Holmes [1979], Holmes [1979], Moon [1980]) and Holmes and Marsden

[191la].

Consider a slender elastic rod, clamped at one end in a rigid frame-

work and constrained to move in a plane (Figure 1.2). Two magnets attached

to the frame as indicated cause the beam to buckle either to the left or

]..--i-- strain gage

f Cos wt<"-'• beam
: //~

" N N" • .N l magnets

framt e s

Figure 1.2. The maqnetoelastic beam
(from Moon and Holmes L1979])

4[ 4

4 right, the central position being unstable. The whole framework is now

moved sin;soidal ly. ýo that the beam vibrates under ,inertial' excitation.

For sriall excitation arnplitudes, periodic motions are observed about either

stable equilibrium, but as the amplitude is increased an apparently sudden

7,rar•ition to a 'chaotic snap through' motion is ob;ervd. 'n this state,

tte beam ,oscillates irregularly about first one and then the other equilhb-

rium. An examoie of Such a ,xtionneasured from a strain guage at the

'SM~



1.4

beam's root, is shown in Figure 1.3.

tip kt , ', i l. • ,,IV•! A [] I !• •

displacement - :4

Pi I " ..I t 0

Figure 1.3. Nonperiodic motion of (a) the beam (from Moon and
Holmes L1979]) and (b) the forced Ouffing equatic':
(from Holmes [1979]).

As shown by Moon and Holmes [1979], the nonlinear partial differential

equations of an inextensible elastic rod in a nonuniform magnetic field

can be truncated in a single mode Galerkin approximation to yield Duffing's

equation:

3y-Y+y -Q (1.9)

where y.- y(t) is the (nondimensional) amplitude of the first mde of

vibration and dissiparion is ignored. On the introduction of weak dissipa-

* tion (aerodynamic damping) and periodic forcing one obtains

y - Y * ('r cos ,.,t - ', . >.0)

4-wnich is tne equation to be studied in Sections 4-6 of this article.

in the following section (2) we introduce sorn bAsic concepts from the

qualitative tneory of dynamical systems and then in Section state and

sketch the pro!fs of the results on perturbed intecrable system.-s. In .ec-

P tion . we apply these results to Dufflng's equation and then. in Section 5,

I
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review more of the relevant abstract theory. Finally, in Section 6, we

bring the abstract theory back to bear on Duffing's equation in an attempt

to understand irregular motions such as that of Figure 1.3. In this article,

although we assume some familiarity with the qualitative theory of dynami-

cal systems and bifurcation theory, we do attempt to introduce or review mcst

of the important aspects necessary for our study. Background material on

differential dynamics may be found in Chillingworth [1976], and on bifurca-

tion theory and nonlinear analysis in Iooss and Joseph [1980] and Chow and

Hale L1981]. The latter reference, and Chow, Hale and Mallet-Paret 11980]

contain many of the results of our Section 3, but presented from a different

viewpoint. The book of Andronov, Vitt and Khaiken [1966] continues to pro-

vide the best background in nonlinear oscillations.



2.1

2. POINCARE MAPS AND INVARIANT MANIFOLDS

We consider the periodicaliy forced system

f(x) + eg(x,t); x 6 IR2 , g(x,t) = g(x,t + T) (2.1)

which can be rewritten as an autonomous system defined on the 'toroidal' phase

2 1space IR x s:

f(x) + Cg(x,0) 2 1
; (x,e) E IR x S (2.2)

where S1 IR/T, the circle of length T. This naturally copes with the

T-periodicity of the vector field. We next define a cross section for the

flow:

t
E 0 = ((x,O) EIR2 x 1= to e[0,T)}, (2.3)

and a first return or, Poincar6 map

t t t
P C 0 : -) E (2.4)

obtained by following orbits (x(t + t ), O(t + t )) based at points
t 00 to

(x(to), to) e to their next intersection with E . We have
0 0.

Itt•,--;", Pa(x(0)) = •(x(T + to) T + to (2.5)
E 0•

where (x(t + t t + t ) is the solution of (2.2) based at (x(t ), t
0 0 0

and n denotes projection onto the first factor. When e = 0, the unper-
t to

turbed Poincar6 map Po 0  P is identical on every section E in view
0

of the invariance of k = f(x) under time translations. P0  is given simply

by the time T flow map of the unperturbed equation

S. . . . . . . . .. . . . . . , = . . . . . . . . . . . . . . . . . . .L . . . . .. _ =
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P(X(o)) x°(T) , (2.6)

where x (t) is the unperturbed solution of 2.1 based at x(O). The per-
t

turbed maps P.0  differ on different sections but any two are diffeomorphic
t +nT1 t

and P =P o.

The Poircard map captures the dynamics of (2.1) in the sense that T-
t

periodic orbits of (2.1) correspond to fixed points of P 0 , mT.-periodic

subharmonic:, correspond to periodic cycles of period m and stability types

correspond. The study of fixed and periodic points of the two dimensional

map P 0 is generally !asier than that of the corresponding periodic motions

in the three dimensional flow of (2.2).

Suppose that the map P (the sub-and superscripts will be dropped

where they are not explicitly needed) has a hyperbolic fixed point p. This

implies that the linearized map DP(p) has eigenvalues Xi with modulus

1, 1, i = 1, 2: a sink, a saddle or a source. The stable manifold

theorem (cf. Chillingworth [1976], Hartman [1973], Hirsh-Pugh-Shub E1977])

and Appendix A) asserts that, in a neighborhood U(p) there are smooth local

stable manifolds Ws (p), Wu (p) tangent to the eigenspaces Es, Eu of
1 oc boc

the linearized problem

= DP(p)ý , (2.7)

and of dimension s, u (s + u 2 here) where s( resp. u) is the number of

eigenvalues with moduli less than 1 (resp. greater than i). These manifolds

are simply defined as the sets of points asymptotic to p under forward

(resp. backward) iterations of P* Ws

Woc(P) ={x E U(p)Ipn(x) E U(p), Vn, and pn(x) p as n -}

W u oc(P) = {x E U(P)Ip'n(X) E U(p),Vn, and Pn(x) p p as n

C * ".C
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and global manifolds are obtained by iteration of the local manifolds

backwards (resp. forwards):

wS(p) = U p-n(Wsn> (loc(P))

n >0
W_ wU(p) =U pn Wu

n>O (locP)

Of course if both eigenvalues lie inside (resp. outside) the unit circle

then Wu(p) (resp. WS(p)) is empty.

We note that while locally they are smooth submanifolds of IR2 ,

WS(p) and WU(p) are not necessarily submanifolds globally, since they

may wird back and forth and accumulate on themselves, as they do in the

"specific examples to follow (Figure 2.1).

U(p) wW'(p)
l•_u lo (P)

4 
W (wS(p)

W1oc(P)-/

Figure 2.1 Stable and unstabLle manifolds

It is important to realize that the orbit of a map {pn(x)) is a

sequence of p.Ants, rather than a curve -; in the case o', orbits of flows

arisino from vector fields. Each of the curves WS(p), Wu(p) in Figure
2.1 contains a one parameter family of such orbits. Uniqueness of solutions
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implies that the stable (or unstable) manifolds WS(pl), WS(p 2 ) of two

distinct points cannot intersect and nor can such a manifold intersect

itself.

A homoclinic point q to a hyperbolic saddle point p is a point

whose orbit approaches p under both forward and backward iterates of P:

rlir P (q) r lim p-n(q) = P,
n+ C n-A

thus q E WU(p) s wS(p). When two plane curves intersect at a point they

generally do so transversely, so that their tangent vectors span IR2 .

Such a point q E Wu(p) T wS(p) is called a transversal homoclinic point

and will play an important role in our analysis. The existence of one such

point immediately implies the existence of infinitely many, lying on the

orbit {pn(q)}. Moreover, the X-lemma (Palis [1969], Newhouse [1980] and

Appendix A)implies that Wu(p) accumulates upon itself, and W S(p) accu-

mulates upon itself, leading to the complicated structure of Figure 2.2.

AWu (P)

P-f

HZ L." .- q

wS(p)

Figure 2.2. Transverse homoclinic orbits. See Section 5.1
for discussion of the rdle of the rectangle S.
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In Section 5 we discuss some implications of such homoclinic orbits,

but first wedevelop a method for their detection in specific examples.

.4

-F

: I



3.1

3. PERTURBATIONS OF INTEGRABLE SYSTEMS: MELNIKOV'S METHOD

The basic ideas to be developed in this section are due to Melnikov

[1963]. More recently Chow, Hale and Mallet-Paret [1980) have obtained

similar results using alternative methods, and Holmes and Marsden [1981a,b,c)

have applied the method to certain infinite dimensional flows arising from

partial differential equations and to multidegree of freedom autonomous

Hamiltonian systems. The basic idea is to make use of the globally compu-

table solutions of the unperturbed integrable system in the computation of

perturbed solutions. To do this we must first ensure that the perturbation

calculations are uniformly valid on arbitrarily lonG or semi-infinite time

intervals.

First we make our assumptions precise. We consider systems of the form

i2

x = f(x) + eg(x,t); X u){~ E IR2  31

where f f f2(x), = lg2(x't)) are sufficiently smooth (Cr, r > 2) and

bounded on bounded sets and g is T-periodic in t. For simplicity we assume

that the unperturbed system is Hamiltonian with f : =' f2 . The
I v' 2 a

non-Hamiltonian case is considered by Melnikov [1963] and Holmes [1980].

Specific assumptions on the unperturbed flow are:

Al. For c o (3.1) possesses a homoclinic orbit q°(t) to a hyperbolic

saddle point po0

A2. Let r° {q°(t)lt E IR} u (po0 . The interior of r"0  is filled with

a continuous family of periodic orbits q"(t), a E (-1,0). Letting

d(x,r) inf jx-ql we have lim sup d(qm(t), r) 0.
Iq Er a 0 tE IR
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A3. Le, h = H(qa(t)) and T be the period of qc(t). Then T is a

differentiable function of h and dT/dh > 0 inside FI.

We note that A2 and A3 imply that T as a 0. Many of

the results to follow can be proved under less restrictive assumptions. In

what follows we indicate the proofs but omit some details. See Greenspan

[19Pl] for more information.

.•3.1 Bifurcations to Homoclinic Orbits

Lemma 3.1. Under the above assumptions, for e sufficiently small (3.1)

has a unique hyperbolic periodic orbit y0 (t) = Po + 0(c). Correspondingly,
t to

the Poincard map P o has a unique hyperbolic saddle point P = P0 + 0(C).

Proof. This is a straightforward application of the implicit function

theorem, our assumptions implying that DP (p ) does not contain 1 in its
0 0

spectrum and hence that Id - DP o(po ) is invertible and there is a smooth

curve of fixed points in (x,c) space passing through (p ,0). a
0

Leima 3.2. The local stable and unstable manifolds Wsoc(Yc), Wuoc(Yc)

of the perturbed periodic orbit are Cr close to those of the unperturbed

periodic orbit p0 X SI. Moreover, orbits qS(t,to), qu(tt ) lying in

W(y'), wu(yC ) and based on E.t can be expressed as follows, with uniform

validity in tne indicated time intervals.

qS(t,tO) = q°(t - to) + eq1 (t,tO) + 0(c2), t E Et II);

qu (t,t ) - qo(t - to) + rqU(t,to) + O(c2), t E (--,to].
00
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Proof. The existence of the perturbed manifolds follows from the invariant

manifold theory of Hirsch, Pugh and Shub [1977], cf. Hartman L19731. We

fix a v-neighborhood (0 < e << v <<l) U. of Po inside which the local

perturbed manifolds and their tangent spaces are c-close to those of the

unperturbed flow (or Poincard map). A standard Gronwall estimate shows that

perturbed orbits starting within 0(e) of q°(O) remain within 0(c) of

0
q°(t - to0) for finite times and hence that one can follow any such orbit

from an arbitrary point q0 (0) on r° outside U to the boundary of U

at, say t = tI. Once in U., if the perturbed orbit q Eis selected to

lie in WS(y ), then its behavior is governed by the exponential contrac-

tion associated with the linearized system. Straightforward estimates then

show that lq (t,to) - qo(t - t )I = 0(c) for t E (tlco). Reveising time,
e 0 0

. -° Ione obtains a similar result for qU(t,to). a

Sanders [1980) was the first to work out the asymptotics in detail.

Tnis lemma implies that solutions lying in the stable manifold are uniformly

Sapproximated by the solution qs of the first variational equation:

Is

4 ql(t,t) 0 Df(qO(t - t 0))q'(t,tO) + g(q°(t-to),t). (3.3)

A similar expression holds for qu(t,to). Note that the initial time,

t appears explicitly since solutions of the perturbed systems are not
0

invariant under arbitrary translations in time.
t t

We next define the separation of the manifolds Wu(p 0), WS(p• 0 )
t

on the section Z 0 at the point q0 (O) as

d(to) qu(to) - qS(to) (3.4)

where U~to) def q~ot)q

where qqU(t) qu(t It ),q(t) q (t t) are the unique points
C 0 C.... 0 0. . " 0
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t t t
on wU(PC0), WS(p. 0 ) 'closest' to P.° and lying on the normal

f(qo(o))o)), fa(q°(o)))T to r at qo(o). The Cr closeness

of the manifolds to I', and Lemma 2 then imply that

f(q) A (q•(to) - q'(t ))
d(t) f(q(O) + O(2 (3.5)

Here the wedge product is defined a ^ b = alb2 - a2b! and f A (q_ - _

is the projection of qu- qS onto cf. Figure 3.1.

t_: 'wU(p 0)

Sq (0) qu(to

A,

Fa w n ttion

C q. °(0) +cql(o.•

wS(p2O " .0) f(q°(O))

•..•Figure 3.1 The perturbed manifolds and the distance function.

'Finally we define the Melnikov function

M(to) J f(q (t- to)) A g(q°(t- to),t) dt . (3.6)

Theorem 3.3. If M(tO) has simple zeros and maxima and minima of 0(1), then
f t

for c > o sufficiently small wU(pO) and WS(p. 0 ) intersect transversely.
t

If M(t ) remains bounded away from zero then WO(ptQ) r)wS(p 0)

S. . .. "- -.- ,-,-,-,- ,.-, ,,.,,,,,, 1 •, , ','
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Proof. Consider the time dependent distance function

A(t,t ) = f(q°(t - to)) A (qu(t,t 0) - ql(t,t 0 ) (3.7)

def A(tt)-A(t,t)

and note that d(t) E(to t )/0f(qo b)); + G(e2), from (3.5). We com-

pute

d s0a s(t'to : f(qO(t - to))qo(t . to^ qls(t,t)

10

+ f(q (t - to)) A q5(t,t )

Using (3.3) and the fact that o f(qo) this yields
?0

A5 =f(q0)f(q0) - + f(qO) A (Df(qO)q' + g(qO,t))

= trace Df(qo)As + f(qO) - g(qOt) (3.8)

But, since f is Hamiltonian, trace Of 0. Integrating (3.8) from to

to • we have

--s(,to) " As(t 0It 0  f(q(t t )) A g(q°(t - t°).t) dt. (3.9)
t

However 6ca(,to) lira f(q (t - t )) q t and lim qo(t -to) Po'
0 t0 q~, 0 ) t 0

so trat lir f(qO(t -t) 0 while q5(m,to) is boundedfrom Lemma

3.2- thus A (,to) 0 and (3.9) gives us a formula for AS(t t. A
0 0

similar calculation qives

.

'V
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t-o

AU(t t f(qO(t- t)) g(qO(t- t ),t) dt, (3.10)
I.1

and addition of (3.9) and (3.10) and use of (3.5) yields

d(to0) = cM(to0)/If(q°(O))l + 0(P-) (3.11)

Since If(q°(O))( = Q(1), M(t ) provides a good measure of the
0 t

separation of the manifolds at q°(O) on Z . In particular, if
M(t ) oscillates about zero with maxima and minina independent of e,

m 0

then qu(to) and qS(to) must change their orie.tiation with respect
E.(0O( ) t t

to 6 00)) as to varies and hence WU(P 0) and wS(P 0) intersect.

If tht zeros are simple j t 0), then it follows that the intersections
SU 5

are transversal. Conversely, if no zeros exist, then q and q. retain

the same orientation and hence the manifolds do not intersect. M

* Rema;-..s ]. We note that M(to) is T-perlcdic in t,, as it should be,

t t +T
since the maps P 0  and P ara identical and thus d(to) 0 a(to + T).

In computing M(t ) we %ire effectively stanaing at -i fixed point q°(O)

on a moving cross section E and watching the perturbed manifolds oicil-

late as t varies. In his analysis, Greenspan (1981] fixes the section

and moves the base point q°(O).

2. If the perturbation g is derived from a (time dependent) Hamil-

tonian function G, g ; 9 then w have

1(to) -j0 IH(q°(t - to)), G(q°(t - t0 ),t)) dt , (3.12)

where ',, -} denotes the'Poisson bracket. This is a natural formula if

one recalls that the first variation of the unperturbed H&.ýi l ton-.an energy
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H will be obtained by integrating its evolution equation

= {H,G} (3.13)

along the unperturbed orbit q (t - t ), cf. Arnold [1964].

3. If g = g(x) is not explicitly time dependent then we have,

using Green's theorem

Jf(q°(t - t 0 )) ^ g(qO(t - to))dt f (fg 2 " f 2gl) dt

"u g (uO'vOPvO) dt

-I g2 (utv) du - gl(u,v)dv

mt r trace Dg(x) dx. (3.14)

Thus the formula obtained in Andronov et al [1971] is a special (planar)

case of the more general Melnikov function which describes the 'splitting'

of the perturbed saddle seperatrices.

We now turn to the casL. in which the pertjrbation g - g(x,z;u)

depends upon parameters ,• E IRp. For simplicity we take p .I.

*1.

Corollar . Consider the parametrized family x - f(x) + Cgix~t;W,

A~ E IR and let hypotheses AI-3 hole. Suppose that the Melnikov function

M(t,,i) has a quadratic zero ((T,-) _- _ 0 but 1 , 0 an,
•- 0

0

% (.,b) 1 O. Then u8 '-'b ÷ 0(c) is a bifurcation value for which

quadratic homoclinic tancencies occur in the family oF systens.
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Proof. By hypothesis, using (3.5), we have

d(top 11) = E{a(p . $b) + $(to T) )2} + O(Clu• -b •2) + 0(e 2 (3.15)

where we have expanded in a Taylor series about (t ,0) (T,pb) and a,

a are finite constants. Taking e sufficiently small we find that

d(t 01) has a quadratic zero with respect to to for some .1B near Wb'

and hence that WU(pT), WS(PT) have a quadratic tangency near q°(0) on
C. C

This result is important, since it permits us to verify in specific

examples one of the hypotheses of Newhouse's [1979] theorem on wild hyper-

bolic sets (see Section 5).

We next turn to the perturbations of the per .•ic motions q inside F.

3.2 Bifurcations of Subharmrnics

Once nmre we start -ith a perturbation lemma:

Lenura 3.5. Let qa(t - t ) be a periodic orbit of the unperturbed system
t

based on with period T . Then there exists a perturbed orbit

q'(t.to), not necessarily periodic, which can be expressed as

qCt) - q•'(t - to) + tq3(tto) + Q(t ) (3.16)

uniform.ly in t E- Ct ,t 0 Ta.1, for c sufficiently s•all and all

E (-IC).

Proof. The proof reiles heavily upon the geometrical structure of tie per-

turbed stable and unstable wanifolds established in Lerma 3.2. le again
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t
fix a neighborhooo U and take a curve of initial conditions qa(0) E 0

not lyne' in UV and with lim qa(0) = q°(O). Any orbit q'(t - to)

starting on such a curve takes a finite time to reach the boundary of U

as t increases or decreases and hence we have •lq(t'to) - qa(t - to)I

O(.) for t E (to - tl, to + t 2 ), say. Once in U, the perturbed and

unperturbed orbits may take arbitrarily long to pass through and exit,

since, as L -÷ 0, they pass arbitrarily close to the saddle point p0  (or

to ye). However, for fixed c = E we can find a set of orbits ly n

sufficiently close to the stable and unstable manifolds which remain within

O(•) of those manifolds until they enter a c s neighborhood U of p,

which is chosen to contain y., Figure 3.2. This implies that we can

extend our estimate uniformly to t E (t0 - t 3 , to + t 4 ), where t3 + t4

is the time required for the unperturbed orbit q0 to pass from the

boundary of Uc and return to it. It remains to check that q'(t,to)

and qa(t - to) remain within 0(e) during the arbitrarily long passage

Wu tW " oc(pe )
S. to -t3.

"Ucc /IIqa

,..t ' 0

U V

/

to + t + o) 0 2

I- N

t +t +tt

0o 4  W l0jP q)

Figure 3.2. Orbits i. U. and U CE

z ai 1 .-,.e ..V j. ..a. • : • . •
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through U . This follows from the 'shear' on the flow near p; one has
cc

to check that qa exits from U 'at the correct time' and since orbits
t�c�C

passing near y take arbitrarily long to exit, and those near the boundary
of U arbitrarily short times. at least one orbit can be found for any

cc

given (unperturbed) time of passage. It follows that an initial condition
t

qa(t )EZ 0 can be picked with 0(e) of qa(O) and q°(O)- such that the

orbit qa(t ) will remain within 0(s) of qa(t- t ) (and qs(t - to))
C 0 0 C 0

until it reaches Uc . It will then 'transfer its allegiance' to qU(t - to)

until it once more reaches an e-neighborhood of qN(O). Throughout it re-

mains within 0(s) of qa(t - t ). This takes care of orbits with un-

perturbed periods T lar than some T' T(s ) depending on so.

For orbits with periods shorter than T'(c) a standard Gronwall estimate
a

ensures s-closeness. Then we have our result for all T and = o.
a0'

But since f and g are Cr the solution will vary smoothly in e and

thus the result holds for all 0 < e <-e0 ' For details see Greenspan [1981].8

• We next define the subharmonic Melnikov function.. Letting qa(t - t )

be a periodic orbit of period mT with m and n relatively prime, we

"set

Mm/n(t) f(q(t - to)) g(qa(t-to),t)dt. (3.17)
0', 

0

Theorem 3.6. If Mm/n (to) has simple zeros and maxima and minima of 0(l),

and dT /dh • 0, then for 0 < c < E(n) (3.1) has a subharmonic orbit of

period mT. If n =1 then the result is uniformly valid in 0 < es< s

Proof. A calculation similar to that of Theorem 3.3 shows that

a I ,. 7.
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MTSf(q (0)) (q (to + mT,t) t q t))(q(t t•~E 0 0 C•t 0 0) 0~=t-t)

A g(qa(t - t ),t)dt/Jf(qCL(O))i + 0(N2 ). (3.18)
0

Thus if Mm/n (t) has a simple zero then there is a perturbed orbitand_,to
which leaves q a(t n returns to o at q + MT) with

C 0 0 t

the vector qOL(t 0 + mT) - qa(to) C Z 0 parallel to f(qL(O)); i.e. the
projection onto f-L(qL(O)) vanishes. Letting M0(to) fo f(qa) g(q(,t)dt

for a near Ca, it is clear that M0 depends smoothly on a. For

a <'.TL < T and for a > LT5 > T ; it therefore follows that we can find
.perturbed orbits q• , q E <a< a2 such that the vectors

5.i 3 5. t f Sq.
it

q (t + mT) - q (to) C Z 0 are parallel to f(q (0)), but that they

have opposite orientations. Thus the curve of initial conditions connecting
B1 2 to

-q: (to) to q F(t 0 ) is mapped back to the section E under m iterates

of 0 as indicated in Figure 3.3. It follows that (P has a fixed

point near qa(0), and hence that there is a subharmonic of order m/n.

The nonuniformity for n > 1 arises because Lemma 3.5 applies only to

orbits with times of length T : mT making one pass through U (p) and

'ultrasubharmonics' of period mT/n make n passes through U V(p). K

q2

-a

_ q ý(t + mT) -fixed point

q~lS/ .-

q (to qF (to)

q (t0 +mT) //

Figure 3.3. The proof of Theorem 3.6.

Mono,.,, W.
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We also have a bifurcation result analogous to Corollary 3.4:

Corollary 3.7. Consider the parametrized family k = f(x) + Pg(x,t;U),

E e IR, and let hypotheses Al-3 hold. Suppose that Mm/n(to,p) has a

quadratic zero M m/n = M/n aM M at = 0 .__Th

at0 0 aat Then
0

= + 0(s) is a bifurcation value at which saddle-nodes occur.
-/. b

Proof. The proof is identical to that of Corollary 3.4. We will consider

the stability types of the orbits created in this bifurcation in Section 3.3.U

The next result is a generalization of oneobtained by Chow, Hale and

*" Mallet Paret [1980]. It implies that the homoclinic bifurcation is the

limit of a countable sequence of subharmonic saddle-node bifurcations.

Theorem 3.8. Let Mm/l(to) = Mm(t ), then

lim Mm(:0) M(to). (3.19)

Proof. We must show that the integral

mT

M (t0  f(qa(t - to)) - g(g'(t - t ),t) dt (3.20)

j mT

converges to

M(t ) f(q°(t - to)) ^ g(qO(t - to),t) dt , (3.21)

as cc - 0 and m + •. (Note that the periodicity of Mm(t ) implies that

mT mLwe can change the limits from 0 ÷mT to •- -- * -2--.) Letting

I"I.
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" = {q"(t)It E [O,T)} and r° = {q°(t]jt E IR} U {p,} we select a

neighborhood U (p) such that the arc length of r°, rP n U (p) is less

0
than v. Choose T such that q (-T) and qO(T) both. lie within U

Then for a close enough to zero, qa(±t) also lie in UV. We have

M(to) 0 Mm(t 0) [ft f(qO) ^ g(qOt)dt - f(q') - g(qa,t)dt

_••T ti

+ 0f(qO) g(qO,t)dt + f(qO) ^ g(qO,t) dt (3.22)

mT1
f f(qL) A g(qa,t)dt - f(qL) A g(qa,t)dt.

-mT IT

The smoothness of f and g and continuity of solutions with respect to

initial conditions implies that, given v > 0, there is an a' < 0 such

that, for a E (a',O) the first [bracketed] term of (3.22) is less than

v. Clearly, as a'- 0 , m + •. The second term may be expressed as the

m difference between two integrals over arcs of r° and ra. Using the arc-
length increment ds = *o2 + *o2 dt lf(q°)ldt on rO and ds =f(qc)Idt

on P, the second term becomes

q ýqO) f01 ~q~) d dsf(q_) (0) d - f(qa) A g(qa,t) . (3.23)

- i-T)If(q°)I qf•(-•)

Our assumptions on g imply that sup lg(qQt) I K< •, and thus
qE Bg(p)

t eIR
that the second term is bounded by 2KM. Hence, for a E (a',O)
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JM(to) - Mm(to)I < (2K + l)v

and fM(to) - Me(to)j 0 as a 0. 0

3.3 Higher Order Terms and Stability

We next develop a perturbation method which enables us to compute the
t

Sglobal structure of the perturbed Poincard map P'0, and to determine how

the sets of subharmonics and homoclinic orbits are related. Our starting

point is Melnikov [1963, §7], although we have somewhat modified his trans-

formations.
Since the unperturbed system is Hamiltonian, a symplectic change of

coordinates to action angle variables can be found in the interior of r 0

I = I(V,v) 0 = E(U,v) . (3.24)

Under this chenge of coordinates (3.1) becomes

SIal al def
i = L U g1 + L g2] defF(I,E,t)

(3.25)
( TIE def

+0 92( G(I,E,t)

heaH t2where I(I ) = T (Ia) :T is the angular frequency of the unperturbed

orbit qcl(t - t ) with action Ic: I(qo'). We now consider small perturba-0

tions of a resonant orbit T . mT LettingOa n

I = IC + h

o £2(IC)t + m t + Q rt + 0, (3.26)

we obtain

1,.

-. ,
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hI =V'F(lt + p,t} + eF'(I,et + O,t)h 3/2- ( + O(e32 (3.27)

_= ,/•'(I•)h + e(G(IO,&' t + ý,t) + i"(I )K

where denotes -I. Here we have e(panded in Taylor series and us-sd the

fact that W' t 0, since dT /dha t 0. Noting that

I _IH 1 1
~ ~ -~1n-f and *. I

S•u •H 3u aC) f2 and - f

the leading term of (3.27) can be rewritten

f - qh(t - 0/&)) - g(qa(t -le),t)

(3.28)

Provided that Q'(I) is bounded, for Vr" sufficiently small the averaging

tneorem (cf. Hale [1963]) can be applied to (3.28) to yield
-- ' 1 1 mTF f(q'(t-O/a)) g(qa(t -/ýa),t)dt

or

- - a '(3.29)

Under the averaging theorem, the hyperbolic or elliptic fixed points of

(3.29) correspond to small periodic motions of (3.27) and hence to sub-

harmonics of order m/n of (3.1). It is, of course, no coincidence that

necessary and sufficient condition for the existence of such fixed points

is that the Melnikov function Mm/n have simple zeros and that SI'(I),

- .1(l') t 0 (dT /dh A 0).

We note that (3.29) is astructurally unstable Hamiltonian system with

u,"4
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Hami 1 toni an

H ~ 2  
- (3.30)

where V ln(/)d, and thus to determine the stability and.m I here ¢) =27--n f

the global behavior of orbits of the unperturbed system near the resonant

orbit qa, we must investigate the terms of O(e). Letting f A g = 1Mrn/n 0

+ F(O,t) where F has period T and zero mean, the averaging transformation

is

h F + V F(4,t)dt; p * , (3.31)

where the antiderivative is defined up to a t-independent term, generally

taken to be zero. Using (3.31), (3.27) becomes

h= ,/ /n($1Rc) + e((F'(I• ,•t + ý,t)fi- Jdta')

+ 0(3/
2)

$ = V R h + .(i"h2 + G(I a, &t + ý,t) + W f ý dt)(
S (3.32)

Since F has zero mean (it is simply a sum of Fourier components), JF and

f also have zero mean and on a second application of averaging to the

O(• ) terms of (3.32) we obtain (dropping the bars)

l. 1 Mm/nG/c1+
h,• • i T n- •/• + ef' (O)h,

+ 0( 3 / 2) (3.33)

= /•'h + c(g"h + l2+()) ,

where -, G are the averages of F' and G. As Morosov £1973) notes,

this second order averaging generally suffices to determine the stability

of the fixed points and hence of the bifurcating subharnionics, at least for

Q' < - and c sufficiently small. However, as we shall see in our appli-

cation in sections 4 and 6, one can also obtain global information on the
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Polncard map by considering the time T flow maps of the averaged systems

(3.33) in the neighborhood of each resonant and nonresonant periodic orbit.

These results on the full Poincard map P follow from application of the

averaging theorem (Hale £19693).

I,.

1)

Ut.
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4. GLOBAL BIFURCATIONS OF DUFFING'S EQUATION

SIIn this section we apply the results of Section 3 to the Duffing equa-

tion with weak sinusoidal forcing and damping. Written as a system, we

have
I0

-V v (4.1)

= u- u3 + C(y cos Wt - 6v)

where the force amplitude, y, frequency w, and the damping 6 are

variable parameters and e is a small scaling parameter. For e = 0 the

system has centers at (uv) = (±1,0) and a hyperbolic saddle at (0,0).

The level set
v2 u2 4

(u,v) =-- u u - (4.2)

* 0 0
i•s composed of two homoclinic orbits,r+ , r and the point po = (0,0). The

unperturbed homoclinic orbits are given by

q+(t - t) (v sech(t - to),- v7sech(t - to) tanh(t- t ,

qO--- q 0 (4.3)

Within each of the loops F° there is a one parameter family of periodic

orbits which may be written

q,(t t0) d {j sn ,klcn --- tsk

k fi l tý 2 2 k ,k /2 k

qk(t t -qk(t (4.4)
- 0 0

where sn, cn and dn are the Jacobi elliptic functions and k is the
elliptic modulus. As k - q q k u (0,0) and as k * 0 qk (±IO0). We

nave selected intial conditions at t t o:
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qoO -/-Oq 0 01 (4.5
The orbits lying outside ru (o,0)1 u ro are given by

[2k' [0 k~ v ftto k
q ( - �to-- -t cn[, ,- sn -I .k)

12k- 1 7. 2k -1 k

dn.-k- - kj (4.6)
k_ l

where k E (1 /7, 1) and qk _ qo U (0,0)} U q° as k I 1 and qk becomes

unbounded as k - I1/7.

We note that the Hamiltonian (4.2) can be rewritten within r 0  (or

r°) in terms of the elliptic modulus k.
k k2- 1 def

H(qk 2 - 1 k - hk, (4.7)

Moreover, the period of these orbits is given by

Tk = 2K(k)/ k2- , (4.8)

where K(k) is the complete elliptic integral of the first kind. T in-

creases monotonically in k with lim T = 1, lim Tk = o and
k-0 k -•I

dTk dT k/dk

•k dH /dk > 0 (4.9a)

and
dT

lim kh (4.9b)
k-1 dhk

We first compute the Melnikov function for q+O (the computation for

qO is identical):
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M(t O 'IN&w) f W v°(t - to )[y cos Wt - 6v°(t - to ) dt

-- "vyF sech(t - t ) tanh(t - t ) cos wt dt

-26 sech2 (t - to) tanh2 (t - to) dt . (4.10)

The integrals are easily evaluated *the first by the method of residues) to

yield

M(t4 IY,6,w) -L - vlyn'w sechf2,) sin Wt0  (4.11)

j If we define

R9 4 cosh (.2R0(•) = .. (4.12)

34"Rw

then it follows from Theorem 3.3 that if y/6 > R0 (W),WS(P C) intersects

W U(p ) for e sufficiently small and if y/6 < R0 (w),WS(P ) fWU(PE ) = 0.

Moreover, since M(t ,0y,6,w) has quadratic zeros when -y/6 R0 (W), it

follows from Corollary 3.4 that there is a bifurcation curve in the y, 6

plane foreach fixed w tangent to y - R°(w)6 at y - 6 - 0 on which quad-

ratic homoclinic tangencies occur. We display some calculated bifurcation

curves in Figure 4.1, below.

We next compute the Melnikov function for the resonant periodic orbits.

W e will only consider those within r+, q+(t t The resonance condition
+ 0

is, from (4.8)

2K(k)/I• - k 2'_ (4.13)j •,n

and for each choice of m, n with > .. (4.13) can be solved to give

k(m,n)a unique resonant orbit q+ Computing

1t

i II It
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MIn/n(toY,6,w) fvk('n)(t - t0 )y Cos t - 6vk(w'n)(t - to)] dt. (4.14)

Using the Fourier series for (4.4) and Remark 3 following Theorem 3.3, we

obtain

/n(toY,6,w) = -6Jl(mn) - YJ2 (m,nw) sin wt0o (4.15)

where Jl(mn) =[(2 - k2 (m,n))2E(k(m,n)) - 4k' 2 (mn)K(k(m,n))M/(2 -k2 (m,n)) 3/2,1 3

and

0; n~ l
(m~~w =

ITWSC K(k(mji))

Here E(k) is the complete elliptic integral of the second kind and k'

is the complementary elliptic modulus k' 1 - k2 . Defining

J (re,l)" R m() M (M,IW) • (4.16)

2

S- we conclude from Theorem 3.6 and Corollary 3.7 that if y/6 > Rm( ) then

there is a pair of subharmonics of order m (period 2?rm/n) which appear

on a bifurcation curve tangent to y a Rm(w)6 at y : 6 0.

Routine computations verify that

lin kt o.Y,6,W) 4(to*YV6;W) ,4.17

that the limit is approached frtn below and that the rate of convergence is

extemely rapid (cf. Figure 6.%).

Similar computations for the orbits lying outside r, u ((0,0)) u 7

give the Meunikov function
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/(to,Y,6,u) -6J^1 Ono) - YJ2(m,n,w) sin •to (4.18)

with

Jl(m'n) = 2 [(2k2 (m,n) - 1)4E(k(m,n)) + 4k'(m,n) 2 K(k(m,n)]/(2k 2 (m,n) - 1)3/2

and

0 ; n $ 1, m even,
'I(m~n,w) 2, ,.mrk(,1

Ssech [mTk (m,l) ; n 1 1, m odd.

In this case we obtain a sequence of bifurcation curves
, Idef ^

y jl (m,1)6l/J2 (ml,w) - R (w)6 accumulating on y = R°(w)6 from above.

Here k(m,n) is the unique solution of the resonance relation

T 4K(k) 2 Fk2 I - - - (4,19)

Formore details on the above computations see Greenspan [1981].

In Figure 4.1 we show some of the appiroximate bifurcation curves

y/6 - R°(.), Rm(i) for orbits both inside and outside the separatrix. Below,

in Figure 6.6 we show how the subharnmnic bifurcation curves accumulate on

'he homcl>ic uifurcation curve as m -- for fixed w. 6e leave the

discussion of the detailed structure of the Poincar maps for various param-

eter va.ues (y,6,w) to Section 6.
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5 0

4R ,R

,jR

L

,H • --- + - ,-- -- 4
R~~~ 2.3 .d ~ O

Figure 4.1 (a) Bifurcation curves Rmew) for subharmonics and

homoclinlic orbits inside r U {0,0} U r0-.

R i subharmonic of order i, R0 0 homoclinic

orbit.
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24 0 0 A Li.
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Figure 4.1 (b) Bifurcation curves R (w) for subharmonics and

homoclinic orbits outside r0 + u (0,0} u r 0 .-
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5. SMALE HORSESHOES, NEWHOUSE SINKS AND CHAOTIC MOTIONS

In this section we provide a brief review of some useful results in the

abstract theory of dynamical systems, and in particular of two dimensional

diffeomorphisms. For background material see Smale [1963,1967], Nitecki

[1971], Moser [1973] or Newhouse [1980].

5.1 The Smale Horseshoe

.4 •Here we outline an important example of a planar diffeomorphism due

to Smale [1963]. We shall adapt the map to our specific application.
2

Consider a m,.p F :Q * IR÷ defined on the square Q = [0,1] x [0,1]

such that F is linear on the two horizontal strips H1 = XO,1] [0,l,

H2  [0,1] x £1 -a,a], with[: o] - o]~
DF(p) p EH 1  and DF(p) = L pE H2 ,(5.1)

where 0 < < < 1/2. F is chosen such that the image of the strip

S[0,x] (a, 1 a) falls outside Q but F(H) 1 and F(H2) df V2

are two disjoint vertical strips lying in Q as shown in Figure 5.1. By

. our construction, F has a hyperbolic saddle point (0,0) and F/Q has

constant Jacobian 5/a < 1 and in thus a dissipative map (Newhouse [1979]).

• The nonwanderinc set A C Q of F is obtained by intersecting all forward

and backward iterates:

A = A vr A.; AV = n Fn(Q), Ah = n F'n(Q) . (5.2)
n>O n>U

Thus AV Q n F(Q) = V1 u V2  is a pair of vertical strips each of width

•. It is not hard to see that Ak = i Fn(Q) is 2k disjoint vertical
n.-o

............................. ...................... :I '••-' I.I.;-" -
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I./- - -~ ~ F([O,11 x (a,1-c))
I - */V \

V1 _ V

V Il V
o N

\H

Figure 5.1. The Horseshoe

kstrips each of width a and thus that AV x [0,I] is a Cantor set of

vertical intervals. Similarly Ak k F-n(Q) OLis 2k disjoint horizontal
Ah

*strips each of width ai and Ak 1011] x Cot is a Cantor set of horizon-
tal intervals. Thus A = C x C is also a Cantor set.

* 1To describe the orbits of FA we assign to each point x E A a

bi-infirnte symbol sequence (a.(x)} a 1 *aI a 0a a2  chosen such

that a(x) = 1 (resp. 2) if F(x) E H1  (resp. H) and a 1 (resp.

".i 1<" 2 ,.,

2) if FF-(iu)(X) E V1  (resp. V2). The action of F on A then corresponds

to the shift. a on the space E of all such symbol sequences, and in fact

there is a homeomorphism S l such that the following diagram commutes:

A n A

.,srp ahoNit " n k=[Ol c saCno e fhrzn

-*tl neras Tu A:C x saloaCntrst
.;•. To describe te orbits of FIA wea ssg oec on

k,. biifnt:smo eunc a )={.a2Naaa .} hsnsc
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To every periodic sequence there corresponds a periodic orbit of FIA; for

example the fixed point (0,0) has a symbol sequence {.. 1ll.1ll...}

and there is a second fixed point with sequence {... 222.222 ... }. For

details see Moser [1973]. This method of symbolic dynamics enables us

to prove the following.

Proposition 5.1. The map F has a countable set of periodic points, with

*4 points of arbitrarily high period and an uncountable set of.non periodic

recurrent motions. The periodic points are dense in A and there is an

orbit-dense in A. All the periodic points are of saddle type.

The last assertion follows directly from the form of the linearized

map OF. It is more difficult to prove that FIQ is structurally stable,

but this latter important fact implies that any sufficiently C1-close map

F also possesses an invariant cantor set A homeomorphic to A. Thus

the compiicated dynamics of F cannot be removed by small perturbations.

The 'piecewise linear' map F represents an idealization of a map

"which is embedded in the dynamics of any system with transverse homoclinic

orbits. This result, the Smale-Birkhoff homoclinic theorem (cf. Birkhoff
J.!

*4. L1927] Smale [1963], Moser [1973]) follows from the lambda lemma and the

homomorphic structure of Figure 2.2, although it can be proved independently.

v •We select a small rectangle S bounded by pieces of the stable and unstable

manifolds WS(p), WU(p), with a transverse homoclinic point q at one
corner. There are then integers X1' k2' ni, such that A = P (S),

B =P 2(S) are disjoint and lie in any neighborhood U,(p), and the map
n. n.

P 1 :B ÷A is well approximated by its linearization DP 1(p). This en-

ables one to find horizontal strips H1, H2 C B whose images under
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*' • •.i +Z +ni (2l+Z 2+ni) "'•i+ +n2 )
P are vertical strips Vl,V2 C B. The map P

then has a horseshoe. A careful study of the linearized map enables one to

obtain estimates of hyperbolicity and show that the behavior of
S~(ti •n )L (-+9.2+ni)

P 1 is homeomorphic to that-of the 'idealized' map F.

Specifically, for our problem we have

t t t
Theorem 5.2. If the Poincare map P. Z ) 0 possesses a transverse

4homoclinic point q to a hyperbolic saddle point pe, then, in a neigh-

- I borhood of q•, some power possess an invariant zero-dimensional
t 

C

cantor set A on which (P o is conjugate to a shift on two symbols.*1

toN
Corollary 5.3. (P )'/A possess a dense set of periodic points, there are

points of arbitrarily high period and there is a non-periodic orbit dense

in A. Moreover A is structurally stable in the sense that if P is
t AN

sufficiently C' close to P then (P) has a non-wandering set A
tN -N

and there is a homeomorphism h such that (P o) Oh Lop

The horeseshoe's non-wandering set A is extremely complicated, It

is of saddle type and has one dimensional stable and unstable bundles

W (A), Wu(A) which are locally the products of Cantor sets and curves.

Letting W S(0,0), W U(0,0) be the stable and unstable manifolds of the

fixed point {...1ll.Ill...} of the idealized horseshoe, F, we have

W (A) - C.(WS(0,0)) and Wu(A) . CZ(Wu(0,0)), and since such a A can

be chosen arbitrarily close to any transverse homoclinic point qE and

hence to the saddle point p in our application, it follows that

wS(A) . CZ-(WS(p E))

Wu(A) CZ(Wu(p )

iZM



Thus the structure of the stable and unstable manifolds WS(p), WU(p•) is

doubly important not just for establishing the existence of horseshoes, but

also in their structure. We shall return to this in Section 6.

5.2 Homoclinic Tangencies and Newhouse Sinks

We now turn to the bifurcations in which horseshoes are created. Newhouse

[1974, 1979, 1980] has studied the situation and has shown that the lack of

hyperbolicity which occurs when stable and unstable marifolds havea quadratic

tangency persists under small perturbations. We first require a definition.

A hyperbolic (basic) set A(F) for a two dimensional diffeomorphism F is

called wild if there is a crneighborhood N of F such that for any G GE N

there are points x,y E A(G) such that •Uu(x) and WS(y) are tangent some-

.* where.

Theorem 5.4. (Newhouse L1979]). Let p be a dissipative saddle point of

a two dimensional Cr diffeomorphisr,. F (Idet(DF(p))J < 1). Suppose
u u (p), WSW are tangent at some point q. Then arbitrarily Cr near F

there is a diffeomorphism G naving a wild hyperbolic set near the orbit of

q.

Wild hyperbolic sets are important because they imply the existence of

countably many stable periodic orbits.

Tneorem 5.5. ýuose F is a two dimensional Cr diffeomorphism with a

wild hyperbolic set A containing a dissipative periodic point. Then there

is a neighborhood N of F and a residual subset B C N such that if

G C s, then G has countable many periodic sinks.
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For a proof of Theorem 5.5 see Newhouse [1980]. One step in the proof

closely resembles a result obtained independently by Gavrilov and Gilnikov

[1972,1973), who showed that, for certain two dimensional diffeomorphisms,

the homoclinic tangencies were the limit of an infinite sequence of saddle-

node bifurcations in which pairs of periodic sinks and saddles are created.

To illustrate their argument, consider a one parameter family of maps F

such that for p < 0 Wu(p) 0W S(p) 0 while for .i > 0 we have transversal

intersections and at pa = 0 F has a quadratic tangency as in Theorem 5.4.

We pick a coordinate system (x,y) such that, in a neighborhood U (p),

WS(p) and WU(p) are given by y = 0 and x = 0 respectively. Let

q 2 = (0,7) and q, = (7,0) = Fn(q2) be (non-transverse)homoclinic points
2

" ,and Al, A2 be neighkorhoods of ql, q2 lying in U as shown in Figure

--5.2. The map Fk : A, -+A2 is well approximated by

DFp) X K 01 (5.3)

where 0 < X < 1 < y and xy < 1 and k - o as we pick domains in A1
closer and closer to WS(p). The form of the map Fn :A -* A, (n is fixed)

0* 2 ( sfxd
- may also be approximated since, by hypothesis, the vertical line WU(p) r) A

is mapped to the parabola WU(p) n A1  and the parabola WS(p) nA2  to the

--1 .horizontal line WS(p) n A1  When V t 0 the images also undergo a verti-

cal translation. Using these facts, and normalizing the maps to remove re-

dundant parameters, we arrive at ai approximate quadratic map

Fm+k k k k 2F f k (x -x, y) 6 (_(y y ). x) kx +a(y y 7) u) • (5.4)

(We have. selected the orientation such that a > 0). It is interesting to

note that this is essentially the same quadratic map studied by Henon £1976]
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P ql Ws(p)

- kFigure 5.2. Quadratic homoclinic tangencies

and conjectured, on the basis of numerical evidence, to possess a strange

attractor.

' We fix a horizontal strip H(k) C A, and an integer k such that

Fk(H(k)) r)A2  is a vertical strip and hence Fn+k(H(k)) f A1  is non empty.

Equation (5.4) then permits us to compute the approximate bifurcation value

for which a pair of periodic orbits of period n + k appear in a saddle node

bifurcation:
k- -k-- k y-k)2

U 2y _ I ( + (5.5)

It is easy to check that uk 0 " as k -, showing that the homoclinic

tangency at p 0 is the limit of a countable sequence of saddle node
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bifurcations. For sufficiently large k, these subharmonics of order

m = n + k are precisely those found by Melnikov's method in Sections 3

and 4, since the perturbation methods used there yield all subharmonics

which pass once through U .

The two fixed points of (5.4) existing for P-> Vk are a saddle

and a sink and another straightforward analysis shows that the sink bifur-

cates to a sink of period two at

'k xk" Y-k-+ 3 (Xk + y-k) 2 (5.6)
-4

' ileaving to an orbit of period 2m for the map. The bifurcation sequence

-• also accumulates on j = 0 from below. Recent work of Lanford [1981]

has shown that quadratic maps of the plane with small Jacobian determinant

undergo countable sequences of period doubling bifurcations precisely as do

one dimensional maps to which they are sufficiently close (Feigenbaum [1978],

Collet, Eckmann and Lanford [1980]). The present map has jDg v,ki I (Xy)k

and therefore fails into this class for k large. We conclude that j

is but the first of a countable set of period doubling bifurcations which

must take place before 0 0, since for U > 0 there is i full horseshoe

in A1  near ql, containing points of all periods for the map Fn+k In

fact countable sets of further bifurcations must also occur, in which points

of period 2J.3(n + k), 2J.5(n + k); j 1 1, 2, ... etc. are created. Since

such sequences occur for each sufficiently large k we have a countable

"sequence of countable sequences of bifurcations all accumulating on p - 0.

One can thus find sinks of arbitrarily high period in any neighborhood of a

non transverse homoclinic point q, and finite sets of these sinks persist

when the homoclinic tangency is broken. Newhouse's results [1979,1980] give

- more i 'foration and in particular show that, in the case of tangencies, the
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closure of the set of homocllni~c points of a suitably perturbed map is con-

tained in the closure of the set of periodic sinks. This implies that any

homoclinic orbit can be approximated arbitrarily closely (for finite, but

"-l arbitrarily long times) by a stable periodic motion and thus the horseshoe

might become' 'physically observable'. On the basis of this work Newhouse

[19792 conjectured that some of the numerically observed strange attractors

(such as that of Hdnon [1976]) might in fact be orbits lying in the stable

manifolds of long period sinks. The question is still open, and we shall

return to it in the next section.

Before closing we note that, even without Theorem 5.4, the existence

of a single parameter value p at which a homoclinic tangency occurs im-

mediately implies a countable set of such values, since the stable and un-

stable manifolds accumulate on one another, by the lambda lemma. Thus the

'first' tangency is immediatley followed by infinitely many others, each

with their attendant saddle-node and period doubling bifurcations.

4

ii

I *'
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6. THE GLOBAL STRUCTURE OF SOLUTIONS OF DUFFING'S EQUATION

In thi-s final section we make use of the bifurcation and perturbation

computations of Sections 3 and 4 and the abstract theory of Section.5to obtain

"a partial understanding of Duffing's eqNuation (4.1) for c small. We start

by considering the phase portraits of the averaged systems (3.29) and (3.33)
0

near each resonant periodi: orbit inside the separatrix r+. Similar conclu-

sions apply within r° and outside the appendix.

-.4

6.1 Subharmonics and Their Domains of Attraction

The material in this and the following section is deduced directly from

the theory of Section 3, the results of Section 4, and standard results in

dynamical systems theory such as that reviewed in Section 5. In these two

sections we collect various proven facts ooncerning Duffing's equation, al-

though we do not state precise theorems. In the concluding Section 6.3 we

go on to make some conjectures which we feel have a firm basis in these facts.

Within r the action transformation gives

1
I k I(k) ( [2(2 - k2 )E(k) - 4k' 2K(k))/(2 - k2 )33/2, (6.1)

where the elliptic modulus k depends implicitly upon u and v throughv 2 u2 u4 k2
tne relationships H(uv) + + Usig (4.13) we have

-2 (2 -k2k 2)

1-1 T~k 74k8

,* 4k k' K(k)

- .. , ,-



where k = k(m) is defined by the relationship K(k)o2 - k rm/w on a

resonant orbit of period 21m/w and k =1 - k2 . Thus (3.29) and its

integral (3.30) become

r v-a'(m)h , (6.3)

, (-6J1(m) - )12(m) sin(me))

and H = [ h2+2 1 (m)6 y m cosOmO) , (6.4)

where we have used equation (4.15) (with Ji(m,l) (m Jim)) and the fact

that S(Ia) = w/m at resotlance. Noting tnat UJl(m), yJ 2 (m,w) are positive1 2

while Q'(m) is negative we easily sketch the phase portraits of (6.3) for

the three cases y/6 <, = ,> RM (w), as in Figure 6.1. Note that, for

y/6 > Rm(,), in each resonant band there are m saddles and m 'centes'

corresponding to a pair of subharmonics of order m in the original system.

To study the actual stability type of the fixed points which appear as

centers in the O(A) approximation, we compute the averaged higher order terms

F, G of Eq. (3.33). After tedious but routine computations we obtain

S= -

where K and K.) are~constants found by integrating products of elliptic and

*1 trignometric funcion:r, much as in the first order terms computed in section

four. We note that we do not need P-0 explicitly, and that tne trace (up to

O(C)) is given by

(cf. eq.k3.33)).

-7



Thest fixed points are thus found to be sinks, and the bifurcations in which

they are created simple saddle nodes, rather than the doubly degenerate

Hamiltonian bifurcations occuring in (6.3) when y/6 = Rm(w). We show the

¶ phase portraits in Figure 6.2. The stable manifolds or domains of attrac-

tion of the sinks are shaded.

The methods used here are quite standard and include a check on the

non existence of closed orbits by Bendixon's criterion. Morosov [1973],

[1976] obtained similar results for a related equation.

S(a) y <Rm(,) (b) (c y =

Figure 6.1. Phase portraitS of Zq. 6.3, m 2.

--
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(a) Y < Rm(.)6 (b) y R• Ri •6) (c) y > Rm(})6

Figure 6.2. Phas-a portraits of Eq. 6.3 with O(e) terms added, m = 2.

It is important to realize, however, that unlike the existence Theorem 3.6

these results are not uniformly valid since the factor a'(m) in (6.3) be-

comes unbounded as m ÷ •; in fact using the asymptotic behavior

K(k) - P.n(4/k') as k * l(k' - 0), we have

S(m) -2 4w 3 e2Tm/w (6.6)
4k' 2 [n(4/k')] im3

as m -. ®. Thus averaging is valid for successively smaller regions

* 0 < C < C0(m) as m increases, and, while the invariant , nifolds ancli-0

speriodic points of the Poincard map P are qualitatively similar to those

of Figure 6.2 in any given resonance band , we cannot carry our stability

results uniformly to the limit of homoclinic bifurcations as in Theorem 3.8.

Our results are, however, good for subharmonics of all finite orders m <

and hold within each resonance band near the unperturbed resonant orbit of

pe.-iod 2nm/w.

Noting that J1((m,n) > 0 while J2(m,n,w) - 0 for n t 1 (Eq. 4.15)

we conclude that, between the resonance bands all orbits decay 'inward'

(h(t) decreases). This implies that he unstable mnifolds W (sK) of the

saddles of period k intersect the stable manifolds W5 (sk-l) of those of

period k - 1 and one therefore obtains the global structure of connected

resonance bands indic,.ted in Figure 6.3 tcf. Hayashi [1980], Figure 3).

I fi
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=0 =27r

Figure 6.3 Heteroclinic orbits connecting neighboring resonance bands
m = 3 and m = 2.

This structure is repeated between each pair of resonance bands and, using

the lambda lemma, it is possible to prove that, in any neighborhood U of

the stable manifold WS (sk) of a saddle of period k there will be pieces

of the stable manifolds WS(s .),WS(a.) of saddles and sinks of all lower

periods j < k. The resultant violent winding and packing of the alternating

domains of attraction of the stable subharmonics leads to a sensitive depen-

dence on initial conditions, especially for the higher order subharmonic

motions, since the basic width of the domains of attraction, calculated from

the integral ('6.4) of the 0(v•) Hamiltonian approximation is

AI(m) (yJ 2 (m) cos(m0) - 1dJ(m)P)]/2 + O(c) (6.7)

where $ is the root of
sin ~ -6dl(m)

sin - 6R (m) (6.8)

corresponding to the center. For m large, while J1 (m), J 2 (m,w) are bounded

(Theorem 3.8 and j4), jj'(m) *= and we find
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AI (m) ~ m e-eTm/e (6.9)

Sand thus the domains shrink rapidly in size as m increases. In typical

computations all but the lowest order (m < 5, say) subharmonics lie within

a band whose area is less than 1% of the interior of r+.

In Figure 6.4 we illustrate our results with numerical computations of

the Poincare map, showing unperturbed resonant orbits and the perturbed sub-

harmonics. For more detailed and extensive computations on different versions

of Duffing's equation, see Hayashi [1975,1980] or Ueda [1980, 1981a]. The

"interaction of the subharmonics of order m = 2 and 3 with the fixed

points near (u,v) = (±I,0) has been studied using conveptional averaging

methods by Holmes and Holmes [198l].

6.2 Homoclinic Orbits and Chaotic Motions

As we pointed out in Section 6.1, the results based on the averaged sys-

tems (3.29) and (3.33) are invalid near the homoclinic orbit, since

WWI as m ÷ •. We can, however, use the abstract results of Section

5 to study the global structure of the Poincard map in this region, and we

do know from Theorems 3.6 and 3.8 and Corollary 3.7 that subharmonics of all

orders exist here for y > R (0)6, although we cannot compute their stability

types from Eq. (3.33).

We start by noting that the symmetry of solutions of (4.1) (if (u,v,t)

is a solution, then (-u,-v,t + ff/w) is also a solution) together with the

Spresence of transverse homoclinic points for y/6 > R 0 (w) immediately imply

that we can find strips S+, S ' parallel' to WS(p ) and in a neighborhood
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" -•:'; "Figure 6$.4. Some numerically computed subharmoiics for Dutfing's equation:
S= 4.2, •y =0.65, •g 0.005.
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N N

. (p whose images P (S under some iterate P of the Poincare map._ S +

are as shown in Figure 6.5. The orbit of any point x e S+ (resp. S) will

remain near the unperturbed loop r+ (resp. ro) until it re-enters U
+V

In this way, using the symbolic dynamics approach of Section 5.1, we can find

orbits of P which visit neighborhoods of F+ and . in any specified

order.

"•I ;+

S-I S(p

Figure 6.5 The double homoclinic structure

This goes some way toward explaining the chaotic snap through motions

of Figure 1.3 (cf. Tseng and Dugundji [1971], Moon and Holmes [1979], Moon

[1980)), but we must recall that all these orbits are of unstable saddle

type, their dynamics being dominated by the linearized map DP (p ). They

would thus be expected to give rise only to transient chaotic motions and
this is, indeed, precisely what is observed when numerical integrations are

performed in certain parameter ranges; almost all orbits converging to fixed
0 0

points ov subharmonics lying within r+ or r (cf. Figure 6.4). However,

in view of Newhouse's results on persistent tangenices and wild hyperbolic

sets, it is reasonable to expect that there exist stable long period motions

which approximate such saddle-type chaotic orbits arbitrarily closely on

finite time intervals. We return to this point in Section 6.3.

~77

R . .. ..... ÷ ...... -C
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Note that while such 'chaotic subharmonics' cannot be found by the per-

turbation procedures of Section 3, since they pass through U (pe ) arbitrarily

often, their existence can be inferred from our perturbation calculations of
WS(p) and W (p•).

We also note that, by arguments similar to those of Section 6.1, we can

conclude that pieces of the unstable manifold WU(p accumulate on all the

unstable manifolds Wu(sk), k = 1, 2, .... of all periodic saddle type mo-
0 0tions within r+ and r. It follows that any attracting periodic motions

within this region lie in CZ(Wu(p )).

• In earlier work (Holmes [1979]) we showed that all orbits of the damped'!

Duffing equation remain bounded and enter some bounded simply connected set

A x Sl C 1R2 x Sl as t ÷®. Letting A E 1 be a section of such a set,

if we define the attracting set A as

"A n (P )n(A); (6.10)
n >0

0

"it follows that" A =Ck(W U(p_) . (6.11)

Here vv. assuEe ot*c o(1,sLD Atm / k OL, f'# IA 2
Sowever, W s we hesho in the next section, it is not likely that A is a 'nice'

attractor; an invariant attracting set which is indecomposible and contains a

dense orbit. Certainly for parameter values (y,6,w) for which tangencies

occur Cz,(WU(p) contains periodic sinks and hence is decomposible.

6.3 The Strange Attractor: Numerical Results and Conjectures

We start by summarizing the results of numerical integrations and com-

putations of the Poincarg map, drawing in the results of Holmes [1979], Shaw

£1980) and, principally, Ueda [1981b]. In Figure 6.6a-d we show plots of
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the stable and unstable manifolds WS(pc), WU(ps) for fixed eS a 0.25,

"w 3, 1.0 and ey varying. These curves are obtained by iterating short

line segments lying near W oc(P ), W oc(p ). We note that the manifolds

have just intersected for the first time at cy = 0.19 the theoretical value

from Eq. (4.12) being ey = 0.188. As y is increased for fixed 6 the

homoclinic bifurcation and resulting formation of horseshoes near Wu(pE)

* ioccurs while stable fixed points continue to exist within each of the (unper-

turbed) loops to, ro. However, with appreciably higher y and for a wide
rvnge of y,6 values, numerical computations suggest that there are no

stable low period attractors and one observes the characteristic 'strange

attractor' motions of Figure 6.7. Comparing Figure 6.7a with 6.6d, we note

that this single orbit appears to fall on CL Wu(p ), as predicted in Section

. 6.2. For typical power spectra of these motions see Holmes [19793 or Ueda

[1980, 1981a].

In Figure 6.8 we indicate regions in ey, e6 parameter space for w = 1

I, in which the various attractors are observed. We also superpose some bifur-

cation curves from our theory. In each region we sketch a representative

motion projected onto u-v space. These numerical results are due to Ueda

[1981b]. Note how the subharmonic bifurcations all occur very close to the
-.4e

homoclinic bifurcation curve y = R°(w)6, apart from those of order m 1.

Above y (w)6 subharmonics of all orders exist both inside and outside

the unperturbed seperatrix 0 + U (p u r, although only low period ones are
0 0 0

observable. The theoretical value of agrees well with that observed.
•.-

This term is used only for convenience; we should more correctly say 'appar-
ent,', non-periodic attracting motion'. As indicated at the end of Section
6.2, we define a strange attractor for the map P as an attracting set A
which is indecomposible, has a dense orbit and is neither a fixed point nor

* a pericdic orbit.
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(a) -I.

Figure 6.6. NLumerically computed Poincard maps for Ouffing'S equation.
w= 1.0, E6 = 0.25. (a) ey =0.05, (b) E*Y = 0.13.
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Figure 6.7. Numerically computed orbits of the Polncar6 map, w - .0.
: 0. 31C. (a) c6 -- 0.25; (b) c. - 0.20.
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For small damping (ý6< Q.1),sustained strange attractor motions are not observed

and we find only fixed points (T-periodic motions) or subharmonics of rela-

tively low orders (< m - 5) coexisting with the transient chaos characteris-

tic of horseshoes, cf. Figure 6.4. On the other hand, for higher damping
+ 0~

levels we observe stable T-periodic motions outside ro u {po} u r (cf. Holmes

[19793). One apparently requires moderate forcing and damping for the strange

attractor to exist. We note that in some parameter ranges (with multiple

shading in Fig. 6.8) two or more attractors (periodic and/or strange) coexist

and that one can observe hysteresis in the jumps from one attractor to another

as the parameters (e,y,6,W) are slowly varied.

We now attempt to describe the various attracting sets in the light of

the theory developed in this article. For low damping the stable subharmonic

motions and horseshoes predicted in Sections 3 and 4 account reasonably well

for the numerical observations, especially in view of the small characteristic

* size of the domains of attraction of high subharmonics (eg. (6.9)) and the

associated implication that small machine errors will be sufficient to per-

turb orbits from the stable manifold of one such subharmonic to a neighboring

one, leading to a 'transitionally chaotic orbit' (cf. Ueda (1980]). Thus,

although there certainly are paramecer values for which such long period

sinks exist, they are not observable in practice. Franks [19813 has some

interesting results on the addition of random perturbations to a motion

* Coriginally attracted to a stable oeriod 7 sink of the Hdnon map (cf. Henon

* • [1976]). The addition of a small random vector after each iteration leads

to an orbit which appears to fill out the same 'strange attractor' as one

obserjzs for nearby parameter values without Intentional perturbations. This

observation is one of the motivations for tVe conjecture which follows.
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The second pertinent observation is also based Jointly on analysis and

numerical integrations. The study of near resonant excitation of the stable

periodic motions near (u,v) = (±I,0) in Holmes [1979] and more particularly

Holmes and Holmes [1981] shows that for forcing frequencies w near Al or

2VT, one obtains harmonic and subharmi.nic bifurcations as y is increased,

so that the stable fixed point of the Poincard map can become a saddle point

and (in the second case) throw off an orbit of period two. As in the case

of subharmonics near the homoclinic orbit (cf. §5.2), there is some reason

to think that this period doubling bifurcation is the first in a countable

sequence which has an accumulation point (cf. Feigenbaum [1978] Collet,

Eckmann and Lanford £1980]). The studies of Equation (4.1) and an associated

cubic mapping of the plane

(uv) - (v, - Ou + cv - v3) (6.12)

strongly support4 this idea (Holmes [1979]). In fact in view of the results of

Gavrilov and Silnikov outlined in Section 5.2, we can conclude that all the

s'bharmonic sinks of sufficiently high perio 2nm/w undergo such period

doubling bifurcations as y increases for fixed 6. It seems reasonable to

expect these each tc be the first of such an accumulating sequence, and all

such sequences presumably accumulate on the homoclinic bifurcation. This

provides a mechanism by which all sinks of periods less than some fixed

integer N can become unstable, leading to our conjecture:

Conjecture 6.1. For any-fixed integer N < w there are open sets of param-
eter values in (cy,d;w) space for which the attracting set A a n O pn(A)

CL(Wu(p )) of the Duffing e quation (4.1) contains a shift on two symbols

with a countable set of saddle type periodic orbits and finite sets of

periodic sinks, none of the latter's periods being le.s than N.
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6.17

This conjecture implies that A is not a strange attractor, since it can be

decomposed into a finite set of simple periodic attractors. Such an attract-

ing set is structurally stable. We can of course, prove this conjecture for

the case N = 2 (Holmes and Holmes [1981]). The conjecture can be proven

for arbitrarily high N using a modified Duffing-van der Pol equation (Holmes

[1981]). Numerical work of Chirikov [1979,1980] and Lieberman [1981] on

diffeomorphisms of the plane, also lends support to our conjecture.

Newhouse's results [1974, 1979, 1980] suggest that there are also

residual subsets of parameter values for which one has countably many sinks,

but a careful examination of the proof of his Theorems 5.4 and 5.5 shows

that the small perturbations of diffeomorphisms with quadratic tangencies

necessary to obtain such infinite sets of sinks are very special, and there

appears to be no guarantee that our specific family realizes these perturba-

tions. in fact some recent work of Guckenheimer [1981] which borrows ideas

for Yakobson's [1978] work on one dimensional maps indicates that one can

also construct diffeomorphisms close to such homoclinic bifurcations which

possess no periodic sinks and therefore presumably have a genuine (indecom-

posable) strange attractor. (Such an attractor has been proven byMisiurewicz

[1980] to exist for the piecewise linearLozi. map. Here the persistent quad-

ratic tangencies and their associated sinks do not occur since the folds in

tne manifolds become points in the piecewise linear manifolds). On the basis

of this work one can conjecture that a situation similar to that in one dimen-

sional quadratic maps holds:

Conjecture 6.2. There is a set of parameter values of positive measure but

containing no open sets for which the Duffing equation has a strange attractor

A=:C(Wulp )), i.e. A contains a dense orbit and is indecomposable.

Note that our two conjectures are compatible.

On this note of unbridled speculation, let us close our story.



APPENDIX. INVARIANT MANIFOLDS AND THE LAMBDA LEMMA

Stable Manifold Theorem. Hirsh,-Pugh-Shub [1977]. Suppose that p ýs a

hyperbolic fixed point of a Cr diffeomorphism P :IRn - IRn and that

ES(p), EU(p) are the stable and unstable eigenspaces of the associated

linearized mapping DP(p). Then, in a neighborhood U.(p) there are Cr

invariant submanifolds W5  (P) Wu (p), tangent to Es(p), Eu(p) at p.

"The global manifolds WS(p), WU(p) are injectively immersed copies of

IRS, IRu , when s = dim ES (p), u= dim EU(p) (s + u = n). Moreover, if P

depends smoothly upon parameters p e IRm, so do Woc (p), WU (P).

X-Lemma. (Palis [1969]). Let P bea Cr diffeomorphism with a hyperbolic

fixed point p and let Du be a u-disc in WU(p). Let A be a u-disc

meeting WS(p) transversely at some point q. Then U Pn(A) contains

u-discs arbitrarily Cr close to Du.

These results also apply to periodic orbits {pi}i 1, ... , n

pi and an analogue of the first result applies to flows, such as
1

that of the suspended system (2.2).
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